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Motivation

• Need fast turnaround for FDTD simulations
– E.g. Frequency extraction (see Travis’ talk), cavity optimizations

• Parallelization of FDTD has limits
– Some problems too small: N > (τlatency /τcell)/N+ τcomm / τcell 

– “Time does not parallelize”

– Access to large systems can be painful

• FDTD highly memory bandwidth limited
– Almost no data reuse -> caches useless

– Multi-core CPU makes it even worse

⇒ Need high memory bandwidth accelerator

Outline

• GPU architecture, programming

• GPULib: Simplification of GPU development

• Implementation of FDTD on GPUs

• Conclusion



Why scientific computing on GPUs? 

Problem: used to be

hard to program



GPUs are Massively Parallel Floating-Point Co-
Processors

• Silicon used for ALUs, rather than large caches
– Up to 240 (!) processing elements (“thread processors”, TP)

– running at 1.3 GHz, statically scheduled, 2 instructions / cycle

– Small software managed caches (“shared memory”, Shrd Mem)

• Organized as ‘Multi-processors’ (~ SIMD processors)
– Software managed caches shared within one multi-processor

– Synchronization within MP, no light-weight global synchronization

• Active thread management
– Work on next thread-set while waiting for a memory request
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Another Advantage of GPUs: High Memory 
Bandwidth

Host memory GPU memory

Cache

GPUCPU



The Flipside: GPUs like (=need!) regular 
“patterns”

• Collection of SIMD processors
– Thread divergence handled by masked execution

• E.g. two-way conditional takes sum of both branches

• Needs large number of threads
– Keep all TP busy

– Hide memory access latency with work

• TPs need to access successive memory locations
– Results in a single memory request

– “Memory coalescence”

• Double precision FP currently slow

⇒ Want large number of (almost) identical floating point operations on 
contiguous block of memory

⇒ Redundant computation is ok, if it optimizes memory access

⇒ Avoid CPU/GPU transfers



CUDA: Code development environment for 
(NVIDIA) GPUs

• Early GPGPU efforts heroic
– Graphics API (OpenGL, DirectX) no natural fit for scientific computing

• Compute Unified Device Architecture (http://www.nvidia.com/cuda)
– Supported on all modern NVIDIA GPUs (notebook GPUs, high-end GPUs, mobile 

devices)
– Future: Co-Existence with OpenCL

• Single Source for CPU and GPU
– Host code C or C++

– GPU code C(++) with extensions
• “Kernel” describes on thread
• Host invokes a collection of threads

– nvcc: NVIDIA cuda compiler 

• Runtime libraries
– Data transfer, kernel launch, ..

– BLAS, FFT libraries

• Simplified GPU development, but still “close to the metal”!



GPULib: One way to simplify GPU development

• Provide access to GPUs in Very High-Level Languages
– IDL, MATLAB, (Python)
– Seamless integration into host language

• Data objects on GPU represented as structure/object on CPU
– Contains size information, dimensionality and pointer to GPU memory

• GPULib provides a large set of vector operations
– Data transfer GPU/CPU, memory management
– Arithmetic, transcendental, logical functions
– Support for different types (float, double, complex, dcomplex)
– Data parallel primitives, reduction, masking (total, where)
– Array operations (reshaping, interpolation, range selection, type casting)
– NVIDIA’s cuBLAS, cuFFT

=> Reduces need for CPU/GPU transfers

• Download from http://gpulib.txcorp.com
(free for non-commercial use)

Messmer, Mullowney, Granger, “GPULib: GPU computing in High-Level Languages”, Computers in 
Science and Engineering, 10(5), 80, 2008.



A GPULib example in IDL

CPU GPU

X

y

X_gpu

y_gpu

IDL> gpuPutArr, x, x_gpu

IDL> gpuGetArr, y_gpu, y

IDL> y_gpu = gpuSin(x_gpu)

Sin()
x_gpu

y_gpu



GPULib layered architecture is easily extensible 

GPULib functions

GPU

Vector 

Arithmetic

NVIDIA functions

cuBLAS cuFFT
Data 

Manipulation

Complex
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CUDA
Runtime 

API

GPUlib wrappers 
(language specific, includes software emulator)

IDL, MATLAB, (Python)



How to get performance?

• Kernels are very fast, GPU<->CPU data transfer is 
slow

Vector length

Vector length

Kernel only

Single invocation

10 invocationsx+y

ax+by+c
Sin(x)

exp(x)

lgamma(x)



Example: Image Deconvolution

• Image is convolved with detector point-spread function:

• Clean image by (complex) division in Fourier space:

• Large computational load per CPU-GPU data transfer

• Speedup ranging from 5x – 28x for 256x256 – 3kx3k images
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Example: Database search

• Find closest match in 500k words with 128 characters each
• Less than 10ms
• CPU: ~200 ms

• GPULib 1: 500k dot-products
– Need test vector on GPU
– Vectors short
– Huge number of kernel invocations 
=> Bad idea

• GPULib 2: 128 accumulations
– No need to transfer entire vector
– Large vectors
– Smaller number of kernel invocations
=> ~27 ms

• Hand crafted implementation
– Transfer data to GPU
– Perform 128 dot products concurrently
=>   < 8 ms (old GeForce 8800 GTX)
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FDTD fits well on GPUs

• Data remains on GPU
– Memory large enough for interesting problems
– For distributed memory use 1D/2D/3D memcpy

• Avoid operations on short vectors
– Stencil picture may be misleading

• Treat 3D domain as large 1D vectors
– Shifted vector operations ‘cheap’

• Pointer arithmetic possible on GPUs
• Regular operation on large vector -> ideal for GPU

– ‘Dirt’ at domain boundaries due to wrap-around
• Removed by applying boundary conditions

(Canadian Company Acceleware sells GPU-based FDTD accelerators: 

www.acceleware.com)



GPULib enabled rapid development of 
FDTD on GPUS

• 3D FDTD
– Cut-Cell (Dey-Mittra) and Stair-Stepped boundaries

• Reads VORPAL geometry output
– Simulations should result in 

• Entire computation on rectangular domain
– Compute update outside of conformal boundaries for simplified memory 

access

• Entirely GPULib based
– Written in IDL -> integrated visualization, visual debugging
– Quickly demonstrate potential of GPU based FDTD
– Parallelization using mpIDL (http://www.txcorp.com/products/FastDL)

• Custom Kernel
– Optimize for performance, reduce memory transfer



Preliminary performance results
highly promising

• Performance (preliminary) 
– Up to 470 Mcells/s on GPU including cut-cells boundaries

• Currently at ~70% theoretical memory bandwidth, so still potential

– ~10 Mcells/s on CPU

⇒~ 40-50x speedup compared to CPU based implementation
– Comparable to ~48 Franklin cores

• Question: How bad is effect of single precision FP?
– Needs detailed evaluation
– Think about your units!

• Question: What about large problems?
– Currently no huge GPU systems available, may change
– 2.6x speedup on a 3GPU ‘cluster’ (PSC)



Summary/Conclusions

• GPUs offer large for accelerating scientific applications

• CUDA significantly simplifies code development
– Still requires understanding of hardware

• GPULib enables GPU development from within VHLLs
– Provides large set of vector operations with unified interface
– Enables rapid development of GPU accelerated algorithms
– No hardware knowledge required

• FDTD solver on GPU
– Loosely coupled to VORPAL (tighter integration planned)
– Both stair-stepped and cut-cell boundaries

• GPUs yields ~40x speedup compared to CPU
– Problems that take O(minutes) become O(seconds)
– Compute on your desktop, rather than at HPC center


